
RENN: Efficient Reverse Execution with
Neural-network-assisted Alias Analysis

†‡Dongliang Mu, ‡Wenbo Guo, ‡Alejandro Cuevas, ‡Yueqi Chen, ‡Jinxuan Gai
‡Xinyu Xing, †Bing Mao, §Chengyu Song

†National Key Laboratory for Novel Software Technology, Nanjing University, China
‡College of Information Sciences and Technology, The Pennsylvania State University, USA

§University of California, Riverside, USA
{dzm77,wzg13}@ist.psu.edu, aledancuevas@psu.edu, {yxc431,jug273}@ist.psu.edu,

xxing@ist.psu.edu, maobing@nju.edu.cn, csong@cs.ucr.edu

Abstract—Reverse execution and coredump analysis have long
been used to diagnose the root cause of software crashes. Each of
these techniques, however, face inherent challenges, such as insuf-
ficient capability when handling memory aliases. Recent works
have used hypothesis testing to address this drawback, albeit
with high computational complexity, making them impractical
for real world applications. To address this issue, we propose a
new deep neural architecture, which could significantly improve
memory alias resolution. At the high level, our approach employs
a recurrent neural network (RNN) to learn the binary code
pattern pertaining to memory accesses. It then infers the memory
region accessed by memory references. Since memory references
to different regions naturally indicate a non-alias relationship,
our neural architecture can greatly reduce the burden of doing
hypothesis testing to track down non-alias relation in binary code.

Different from previous researches that have utilized deep
learning for other binary analysis tasks, the neural network
proposed in this work is fundamentally novel. Instead of simply
using off-the-shelf neural networks, we designed a new recurrent
neural architecture that could capture the data dependency
between machine code segments.

To demonstrate the utility of our deep neural architecture,
we implement it as RENN, a neural network-assisted reverse
execution system. We utilize this tool to analyze software crashes
corresponding to 40 memory corruption vulnerabilities from the
real world. Our experiments show that RENN can significantly
improve the efficiency of locating the root cause for the crashes.
Compared to a state-of-the-art technique, RENN has 36.25%
faster execution time on average, detects an average of 21.35%
more non-alias pairs, and successfully identified the root cause
of 12.5% more cases.

Index Terms—Reverse Execution, Deep Learning, Memory
Alias

I. INTRODUCTION

Software defects are prevalent and inevitable. Developers are

facing increasingly larger and more complex programs, while

the releasing cycles are becoming shorter. When triggered,

these defects can lead to runtime failures (e.g., crashing

or terminating abnormally) or compromise of the security

and privacy of the end users. Therefore, it is important for

developers to identify and fix the root cause of a runtime failure

The first two authors contributed equally to this paper.

in a timely manner. Unfortunately, debugging a runtime failure,

i.e., understanding what statements are involved and how the

bad values are propagated to the crash site is known to be

difficult. [1, 2]

The most common way to pinpoint the underlying software

defect of a runtime failure is core dump analysis, which looks

for control- and data-flow information that could assist the

analyst in piecing together the cause of the crash [1, 3, 4].

However, because core dump only captures the memory and

register states at the crashing point, such information is usually

insufficient to uncover the cause of the crash.

Another body of work focuses on recording the program’s

execution to have access to complete control- and data-flows [5–

10]. Upon the crash, the analyst can use this log to replay the

program’s execution and study each statement carefully and

reversely [11, 12]. This approach is intuitively more effective

than core dump analysis as the data-flow is readily available

to the developer upon the crash. However, recording a fully

recoverable execution trace is too expensive for practical

deployment.

To provide the best of both worlds, recent works like

POMP [2] and REPT [13] leveraged Intel Processor Tracing

(Intel-PT), a lightweight hardware tracing mechanism to record

the control-flow before the point of core dump. With the help

of control-flow trace, these systems showed it is possible to

recover critical data-flow from a core dump to assist pinpointing

the root cause of the crash. In particular, for instructions that are

reversible, the state prior to the execution of such an instruction

can be recovered by inverting the effects of the instruction.

For instructions that are irreversible, like xor eax, eax,

the state can usually be recovered through forward execution.

The most challenging part is to handle memory accesses where

the addresses are unknown. To address the memory aliasing

problem (i.e., whether two or more symbolic addresses actually

refer to the same data), POMP conducts recursive hypothesis

testing (HT). For each pair of memory accesses, two hypotheses

are generated: one assuming they are aliased while the other

assumes they are not aliased. Each hypothesis is then tested by

emulating prior instructions. If the emulation result conflicts

924

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00090

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

with the recorded ground truth (i.e., control-flow trace and core

dump), the corresponding hypothesis is rejected. Similarly, to

address memory writes to unknown addresses, REPT first

ignores the unknown memory write and then uses an error

correcting scheme to correct these issues when the recovered

states conflict with the ground truth.

As we can see, these conflict-based correction schemes are

very expensive, which is the main performance bottleneck.

Beyond efficiency, another fundamental limitation of these

techniques is that they cannot deal with incomplete traces

(e.g., due to the limitation on the size of the trace). When the

control-flow trace is incomplete, neither techniques are able

to verify memory alias relations because they rely on prior

instructions to do HT or solve access to unknown memory

locations. Therefore, reverse execution can be heavily impaired

(see Section II for details). To address these issues, we introduce

a recurrent neural network (RNN) to enhance memory alias

resolution during software failure diagnosis. Our observation is

that the problem of accessing memory with unknown addresses

can be modeled as a search problem—given a sequence of

memory operations, find an assignment of aliasing mapping

such that the emulation result will be consistent with the core

dump. Note that as shown in [2], there could be multiple

possible “correct” assignments that will be consistent with the

core dump; however, in most cases, they will not affect the

critical data-flow that caused the crash. Once we modeled the

memory aliasing problem as a search problem, the reason why

POMP is not efficient is obvious: it tries to brute force the search

space with random guesses. Unfortunately, as the probability of

two memory accesses being aliased is not uniformly random,

the probability of being wrong with random guess is very high.

As a result, the average computational complexity of POMP’s

HT-based scheme is exponential.

The key to improving efficiency is to make “more educated

guesses” thus increase the probability of guessing the right

answer. As previous studies have shown that artificial neural

networks are good at learning approximations to the true

probability distributions of correct answers, we choose to

explore the feasibility of training a neural network to predict

the alias relation of two memory accesses. If the neural network

can indeed “discover” some heuristics to improve the chance

of guessing the right answers, we can achieve not only better

performance (i.e., less execution time) but also resolve alias

relations and recover the program state significantly even when

working with an incomplete trace.

We implemented the proposed technique as RENN, a neural

network-assisted alias analysis tool for software failure diag-

nosis. We compare our technique with HT: we compare the

execution time and the number of memory aliases resolved or

missed by each approach. To construct our ground truth data

set, we manually analyzed program crashes corresponding to 40

memory corruption vulnerabilities gathered from the Offensive

Security Exploit Database Archive [14] and compared our

manual analysis with the results obtained with RENN and HT.

We observe that RENN can achieve 36.25% less execution time

because deep learning could replace HT when identifying

partial memory alias relations, saving substantial runtime.

Furthermore, RENN can also accurately resolve 21.35% more

unknown memory relationships than POMP when performing

analyses on a crashed execution trace.

Contributions. In summary, this paper makes the following

contributions:

• We discover that deep learning is effective in inferring

memory alias relations.

• We propose a neural network architecture that could

facilitate reverse debugging or reverse execution.

• We implement our deep learning technique as RENN– a

tool that could help diagnose root causes of software

crashes more effectively and efficiently.

The rest of the paper is organized as follows. Section II

provides an overview of reverse execution and its fundamental

limitations. Section III details the novel deep neural network we

propose to improve memory alias analysis. Section V describes

the implementation of our reverse execution system. Section V

evaluates the utility of RENN. Section VI surveys related work.

Finally, Section VII concludes this work.

II. BACKGROUND AND MOTIVATIONS

In this section, we first use an example (Figure 1) to illustrate

how POMP, a state-of-the-art reverse execution technique

pinpoints the root cause of the crash. Then we discuss the

fundamental limitations of POMP that motivate this work.

A. Reverse Execution

Reverse execution is a technique originally introduced in

response to the large volume of information that was necessary

to debug complex programs. This approach is based on the

notion of reversible functions. That is, rather than recording all

the executed instructions and their operands, one can leverage

the reversibility of operations to restore previous program states

from a single state snapshot (e.g., core dump). For example,

Figure 1 shows the partial core dump of a crashed program

at S15 and the corresponding instruction trace before the

crash. Based on S15 we know that the crash happens because

eax@S15=0, the execution of the call eax instruction will

cause eip=0, and the processor cannot fetch instruction from

address 0. The last instruction call eax can be decoded

into three steps: sub esp,4, mov [esp],eip, and jmp
eax. Among these three steps, sub esp,4 is reversible, so

the previous esp can be recovered by adding 4 to it. That

is, esp@S14=esp@S15+4. Similarly, eax@S7=eax@S8-4.

Once the states prior to the crash are recovered, developers can

then analyze the control/data flows that led to the crash. Because

this approach only requires recording the final state and the

instruction trace, with the help of hardware-accelerated tracing

mechanisms like Intel-PT, this approach can be deployed in

production systems [13]. As many crashes in real production

systems are hard to reproduce, reverse execution is especially

useful for developers to understand the root cause of such

hard-to-reproduce crashes.

925

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Memory footprints reconstructed by reversely executing the trace. SN(e.g., S15) is the execution state of the program

after executing the corresponding instruction

Unfortunately, not all instructions can be reversed. For

instance, L10: xor ecx,ecx is a common way to zero

out the register. After executing this instruction, the new value

is always 0 regardless of the previous value stored in the

register, therefore the old value cannot be recovered using

reverse execution. Thus, other pieces of information must be

leveraged to recover the states. For instance, doing a forward

analysis from L5: mov ecx,0, we can infer ecx@S9=0.

A more challenging problem for reverse execution is data-

flow through memory. Unlike registers, whose aliasing relation-

ships can be completely determined by the name of the register,

accurate resolving memory aliasing requires address informa-

tion. However, most memory addresses cannot be determined

statically. Even with reverse execution, only a small portion of

memory addresses can be recovered. As a result, recovering a

previous memory state is very difficult. State-of-the-art systems

like POMP [2] and REPT [13] mostly focus on solving this

challenge. Take POMP as an example, quickly after starting the

reverse execution from L15, we will encounter two memory

read at L14 and L13. Here, we want to know whether the

read value is from an earlier write instruction, like L12: mov
[eax],0. To resolve this, we would need to know whether

[esp+0x8]@L13 and [eax]@L12 are aliasing. POMP uses

Hypothesis Testing to resolve memory alias. Specifically, it

first assumes [eax]@L12 and [esp+0x8]@L13 are aliased

with each other, we could get the following constraint set

over data objects before L14: esp@S13+0x8=eax@S12,

[eax@S12]=0, and eax@S13=[esp@S13+0x8]. Then a

forward simulation would reject this hypothesis because this

will result in eax@S14+4=4 and the program crash at L14.

For the opposite hypothesis, we have another constraint set

over data objects before L14: esp@S13+0x8!=eax@S12,

[eax@S12]=0, and eax@S13= [esp@S13+0x8]. This

hypothesis will not result in conflict so POMP will accept

it. Then we could resolve program states in the light gray area

of Figure 1.

B. Limitations

While POMP and REPT have made reverse execution much

more practical, they also have limitations. The first limitation

is efficiency: whenever a hypothesis testing fails, POMP has

to backtrack and try the opposite hypothesis. As a result, the

average computation complexity is exponential. The second

and arguably more important limitation is their ability to handle

incomplete execution traces. Specifically, although hardware-

enabled execution tracing mechanisms like Intel PT [15]

and ARM Embedded Trace Macrocell [16] allow software

developers and security analysts to record execution trace with

almost no performance overhead, keeping the whole trace

for long- running programs still requires large disk storage.

Therefore, similar to system logs, we can only keep the most

recent N instructions. Such incomplete traces are challenging

for existing techniques like POMP and REPT because they

solely rely on conflicts to resolve memory issues. When the

trace is incomplete, they may not be able to find the expected

conflict, thus failed to locate the root cause of the crash.

Again, consider Figure 1 as an illustrating example. The

key step to locate the root cause of this crash is to understand

where eax@S15 comes from, i.e., which write instruction is

aliasing to the read instruction at L14. Based on the address

expression, one may be tempted to think [eax]@L9 and

[eax+4]@L14 are aliased because they are all derived by

loading from [esp+0x8] then add 4. However, this is only

true if there is no write instruction that would be aliased

[esp+0x8]. In the above subsection, we already showed how

POMP uses hypothesis testing (HT) to resolve that [eax]@S12
is not aliased with [esp+0x8]@S13. However, resolving

whether [eax]@S9 and [esp+0x8]@S11 are aliased is

more challenging. Note that since esp is not changed between

L6 and L14, all [esp+0x8] are aliased. In particular, let us

repeat the process of HT and get two constraint sets over data

objects before S11:

1) eax@S9=esp@S11+0x8, eax@S7=[esp@S7+0x8],

esp@S11=esp@S7, eax@S8=eax@S7+4, and

[eax]@S9=ecx@S9.

2) eax@S9!=esp@S11+0x8,

eax@S7=[esp@S7+0x8], esp@S11=esp@S7,

eax@S8=eax@S7+4, and [eax]@S9=ecx@S9.

When the trace is complete, based on L5: mov ecx,0, we

926

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Memory footprints reconstructed by reversely executing the trace with the help of deep learning.

can reject the first hypothesis because it will conflict with

S11. However, in case of incomplete trace, due to ecx@S9 is

unknown, HT will not encounter any conflict when verifying

both hypotheses. As a result, program states in the dark gray

area of Figure 1 are kept as unknown. Finally, as POMP fails

to verify this memory alias relation, it is impossible to locate

the correct root cause from the crashing site.

From the above example, we can see that the lack of

instructions from L1 to L5 could lead to the missing context

of ecx register, which prevents POMP from resolving alias-

ing relationship between [eax]@S11 and [esp+0x8]@S9,

which eventually prevent locating the root cause. This shows

that incomplete traces could greatly affect reverse execution.

III. KEY TECHNIQUE

To overcome the two limitations mentioned in Section II-B

(i.e., efficiency and incomplete trace), we need better alias

analysis. Traditionally, alias analysis aims to determine whether

two pointers could point to the same memory location. Unfor-

tunately, in the existence of incomplete trace, even powerful

alias analysis techniques like value-set analysis [17, 18] cannot

successfully resolve the aliasing relationship of two memory

accesses. In this work, we explore the feasibility of using

deep learning techniques to solve this challenging problem.

Specifically, we propose a novel sequence to sequence (seq2seq)

recurrent neural network to predict coarse-grained access
regions, namely, global, heap, stack, and other (e.g., does not

access memory). At a high-level, our model takes a sequence of

instructions (in binary format) as inputs and outputs a sequence

of labels indicating the memory region that the corresponding

byte (instruction) may access. The inferred memory regions

are then used to solve the memory alias problem – if two

instructions access the same type of region, we assume they

may be aliasing; otherwise, we assume they are non-aliasing.

The insight of using seq2seq RNN is that we want to infer a

label for each byte (of an instruction) in the input and take into

account the context information within the input binaries at the

same time. Technically speaking, our model is different from

the off-the-shelf RNN in that we relax their label independent

assumption by adding an extra link. In the following, we first

introduce off-the-shelf RNN architectures that have been used in

binary analysis and point out their limitations. Next, we present

the details of our designed network and specify how to use it

to facilitate reverse execution. Last but not least, we provide

more insights about why designing a deep neural network for

identifying memory regions instead of other machine learning

models.

A. Recurrent Neural Network

Past research in binary analysis has utilized three types of

recurrent neural networks – vanilla recurrent neural network

(RNN) [19], long short-term memory (LSTM) [20], and gated

recurrent units (GRU) [21]. In the following, we give a brief

overview of the Vanilla RNN and its variant LSTM and GRU.

Vanilla Recurrent Neural Network. A typical Vanilla RNN

is composed with an input layer, a recurrent hidden layer and

an output layer (Figure 3a). The input layer takes as input

a sequence of values x(1), . . . , x(T). At each time step t, the

hidden layer outputs a representation h(t), which is computed

based on the last hidden representation h(t−1) and the current

input x(t):

h(t) = act(Wh(t−1) +Ux(t) + b)

where act is the activation function [22] and the W, U and b
are model parameters. Then the output layer takes as input the

h(t) and outputs a prediction of x(t) as ŷ(t):

ŷ(t) = softmax(Vh(t) + c)

where softmax refers to the softmax classifier [23] and V, c
are also model parameters.

These model parameters can be learned by minimizing

a loss function, which compares the difference between

ŷ(1), . . . , ŷ(T) and the true label y(1), . . . , y(T) (e.g., root mean

927

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

Unfold

mov ebp, esp

0x89 0xE5 0x89

mov ebp, esp

……

……

WE WE

0xE5

WE

x

h

ŷ

L

y

U U U

W W W W
V V V

x(t−1) x(t)

h(t)h(t−1)

ŷ(t−1) ŷ(t)

y(t)y(t−1)

L(t−1) L(t)

…

…

…

…

…

…

……

…

…

……

…

…

…

…

…

…

……

… …

……

… …

(a) The ordinary RNN.

Byte t-1 Byte t Byte t+1… …

……

WD WD WD

GC(t) GC(t+1)GC(t−1)

(b) The conditional GRU.

Byte t-1 Byte t Byte t+1… …

……

WD WD WD

…

…

GC
(t−1)
2 GC

(t)
2 GC

(t+1)
2

GC
(t+1)
1GC

(t)
1GC

(t−1)
1

…

…

(c) The bi-directional conditional GRU.

Fig. 3: Recurrent neural networks with various architectures serving for different purposes. Note that “GC” indicates GRU cell

and “WD” refers to word embedding.

square error [23] or cross-entropy [24]). The minimization

of this loss function can be achieved by different first-order

gradient based optimization algorithms (e.g., stochastic gradient

descent [25], ADAM [26]).

Long Short-Term Memory. Vanilla RNN suffers from gradi-

ent vanishing or explosions problem [27], which prevents it

from processing a long sequence of input. In binary analysis,

we usually deal with very long sequential inputs (e.g., an input

of 1000 bytes [28]). To avoid this defect, recent works adopted

a Long Short-Term Memory (LSTM) [29] in binary analysis.

LSTM uses a memory cell to replace the hidden layer of the

vanilla RNN. LSTM cell takes as input the last hidden state

s(t−1) and current input x(t) as input and outputs the current

hidden state s(t) and the current hidden output h(t). Within

each cell, it introduces three gates to control the information

flow. The insight behind designing these gates is that they can

force LSTM network to forget some less important information

and only memorize the key information for a longer time. These

gates are functions of LSTM cell inputs (i.e., s(t−1), x(t)) and

the LSTM outputs (i.e., s(t), h(t)) are functions of the cell

inputs and these gates. More details about the formulation of

these variables can be found in [30]. The parameters defined

in the formulas can be learned with the aforementioned loss

function and the optimization algorithms.

Gated Recurrent Units. GRU [31] also can be used to process

long sequential inputs, but with a lower computational cost than

LSTM. The reason is that GRU reduces the number of gates

and variable in a cell. Recent researches [28, 32] demonstrate

GRU and LSTM performs similarly when handling binary

analysis tasks. The details about GRU can be also found in

[30].

B. Our Proposed Technique

With the knowledge of existing recurrent neural networks in

mind, we now specify the design of our proposed technique.

We first describe how we design our neural network and discuss

the intuition behind our design philosophy. Then, we specify

the structures and the training strategy of our recurrent neural

network model, followed by the description of how to facilitate

reverse execution with the proposed neural network.

1) Recurrent Model Design: All of the aforementioned

recurrent networks are naturally capable of learning patterns

hidden behind a sequence. Therefore, we can expect that – as

they have already demonstrated in other binary analysis tasks –

the aforementioned recurrent networks can perform reasonably

well in memory region identification. However, unlike previous

work that simply using off-the-shelf models for their tasks

(e.g., learn function boundaries [28] and determine function

arguments [32]), we design and develop a new recurrent neural

network.

The intuition of our design is as follows. Recall that the

goal of the classifier is to associate a region label with every

instruction. Take for example the instruction push [esp]
indicated by the byte sequence 0xff 0x34 0x24. The label

(stack) tied to byte 0x24 depends on the previous bytes 0xff
0x34. The recurrent neural architectures described above

(Section III-A) could learn data dependency hidden within

this instruction. However, existing architectures assume that

the labels tied to bytes are conditionally independent from each

other given the sequence of bytes indicating the instructions.

In this example, we observe that the memory region (label)

attached to one byte is actually conditionally dependent upon

its adjacent labels (i.e., given sequence of bytes 0xff 0x34,

the label tied to byte 0x24 is dependent upon the label tied

to its adjacent byte 0x34). This suggests that it could be

potentially beneficial for memory region identification if we

could build a neural network with the ability to capture not

only the dependency between and within instructions but also

dependencies between adjacent labels.

Inspired by this, we build a conditional GRU. The structure

of this learning model is depicted in Figure 3b. As we can

observe, we build this model under the structure of GRU with

additional connections from the previous output to the current

928

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

GRU cell. This is in part because a byte sequence in a binary

is relatively long and with GRU we could capture long-term

dependency with relatively low computational cost, but largely

because this recurrent structure removes the conditional inde-

pendent assumption, making the model capable of capturing

label relationships in addition to the sequence dependency.

Comparing with the aforementioned off-the-shelf recurrent

architectures largely adopted by previous binary analysis tasks,

the conditional GRU better captures the relationships between

(and within) instructions as well as that between nearby labels.

Similar to the previous research [28], we also enable our

design with the capability of inferring memory regions in

both forward and backward ways. We further upgrade our

conditional GRU learning model to a bi-directional chain

structure [33] as is shown in Figure 3c. As we can observe

from the figure, the bi-directional chain structure combines

a conditional GRU that moves forward, beginning from the

start of the byte sequence, with another conditional GRU that

moves backward, starting from the end of the sequence. In

this structure, GC
(t)
1 stands for the GRU cell of the sub-

GRU moving forward through time, and GC
(t)
2 represents

the GRU cell of the sub-GRU moving backward through

time. With these, we could perform a label prediction for

a byte pertaining to an instruction based on the sequence of

instructions executed before and after that instruction. Since

the bi-directional structure enables connections from adjacent

labels to GRU cells, we also augment our conditional GRU

model with the ability to make label prediction based on the

memory region that its adjacent bytes attach to.

2) Details of the Proposed Model: In the following, we

describe how to use the proposed model for memory region

identification and then how it can be used to enhance reverse

execution in root cause diagnosis, including pre-processing a

crash trace, performing computation within a designed network,

training a network, and integrating network results into reverse

execution.

Processing Traces. Given a crash trace of n bytes, we first

cut it into m sequences, where each sequence has the length

of k bytes and the last sequence will be padded with zeroes if

its length is less than k. Then, we treat each sequence as the

network input (i.e., (x(1), . . . , x(T))), in which x(t) represents

the t-th byte in this sequence. It should be noted that instead

of directly inputting the hex value into the model, we use a

word embedding mechanism to map each byte into a vector

and take this vector as the input at t-th time(i.e., x(t)). Details

of the word embedding process can be found in [28]. We

attach a label for each byte indicating the memory region(s)

(i.e., [global: 0, heap: 1, stack: 2]) that the corresponding byte

in the input sequence accesses. For example, if we have an

input sequence with [0x55, 0x89, 0x04, 0x24] (i.e., push
ebp; mov [esp], eax). We could infer that it accesses

the stack region. Then we can label it as [2, 2, 2, 2]. Using

the pre-processed input and label sequences, we can train the

aforementioned sequence to sequence model with the following

recurrent structure as the hidden layer.

Recurrent Model Details We integrate the results of the

forward and backward pass of the designed network structure

as the hidden output. To be specific, the forward pass can be

achieved by the following equations:

−→
r(t) = σ(Wr

−−−→
h(t−1) +Ur

−→
x(t) +Rr

−−−→
y(t−1) + br) ,

−−→
u(t) = σ(Wu

−−−→
h(t−1) +Uu

−→
x(t) +Ru

−−−→
y(t−1) + bu) ,

−→
a(t) = W(

−→
r(t) �

−−−→
h(t−1)) +Ux(t) +R

−−−→
y(t−1) + b ,

−−→
h(t) =

−−→
u(t) �

−−−→
h(t−1) + (1−

−−→
u(t))� tanh(

−→
a(t)) .

Where
−→
r(t) and

−→
u(t) are the gates and

−−−→
h(t−1) is

the hidden output of the last time step. Both

{Wr,Wu,W,Ur,Uu,U,Rr,Ru,R} and {br, bu, b}
are the parameters needed to learn. σ(·) and tanh(·) are

activation functions. Recall that we relax the independent

assumption of labels by adding a link from the past label

to the current hidden cell, here {Rr,Ru,R} realizes and

controls the information flow through these links.

The backward pass applies the same equations but from the

opposite direction. We use
←−
h(t) to represent the output of the

backward pass. Using
−→
h(t) and

←−
h(t) , we can then compute the

prediction ŷ(t) by following the equations below:

o(t) = V1

−−→
h(t) +V2

←−−
h(t) + c ,

ŷ(t) = softmax(o(t)) .

Here, V1, V2 and c are also part of parameters that need to be

learned through training.

Training Strategy. When training the proposed neural network,

we select cross-entropy as loss function and adopt ADAM

to train the proposed neural network, which is one of the

benchmark optimization algorithms used to train the neural

networks. Due to the large number of training samples, we

use mini-batch strategy to reduce computational cost and the

technical details can be found in [28].

Facilitating Reverse Execution. With the help of our previous

deep learning model, we could predict memory region infor-

mation accessed by memory reference in each instruction 1.

The memory region information is set as an attribute of

corresponding memory reference/access. When memory alias is

acquired from reverse execution, we first compare the memory

regions of the instruction pair. If the neural network predicts

the two regions are different, we choose the hypothesis that

they are non-aliasing; otherwise, we choose the hypothesis that

the memory is aliasing. With the assumption that deep learning

model could correctly determine the memory region of memory

access with high probability, we could avoid backtracking in

most cases and break the tie between contradictory hypotheses

when no conflict is found. Take Figure 1 and Figure 2 as an

1It should be noted that we map the label tied to each byte back to the
instruction via a majority vote mechanism. That is, we treat the label that
mostly happens in the bytes of an instruction as the label for that instruction
(See Figure 2).

929

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

example. We could know that the memory regions accessed by

[esp+0x8]@L11 and [esp+0x8]@L7 are all stack region,

meanwhile, [eax]@L12 and [eax]@L9 refer to heap region.

Thus, [eax]@L12 and [esp+0x8]@L11 are not aliased

with each other as they reference different memory regions.

Compared with hypothesis testing, deep learning requires much

less execution time because we avoided testing the aliasing

hypothesis. More importantly, we could choose a preferred

alias relation between [esp+0x8]@L7 and [eax]@9 (non-

aliasing), which cannot be determined by HT. With this aliasing

relationship resolved, the dark gray area in Figure 2 could be

recovered, thus locating the root cause at L9.

C. Discussion

Here, we discuss more insights behind adopting deep learning

for memory region identification by answering the following

two questions: � Why machine learning could address the

aforementioned challenges instead of simple statistics? �
Why using deep learning rather than other machine learning

techniques?

Why not Simple Statistic. The most intuitive way of inferring

memory region would be collecting the frequency specific

instructions access a specific memory region within the

available execution traces, building a mapping between the

instructions and memory regions and then using this mapping

to infer the memory access regions within the new traces.

However, due to the diversity of instructions, it is extremely

hard to conclude all of these relationships. Instead, we can only

utilize some commonly-adopted heuristics to predict memory

region accesses for instructions. For example, instructions pop
and push clearly indicate the memory access to the stack. We

leveraged those heuristics for our problem and discovered that

we could accurately predict memory region accesses only for

5% instructions. This motivates us to automatically learn such

correspondent relations from data by machine learning instead

of manually extracting them via plain statistics.

In many previous applications (e.g., API generation [34]),

it has been demonstrated that machine learning, especially

sequence to sequence models can be used to learn patterns

from a sequence of inputs, thus facilitating the determination

of a label for each individual input. As mentioned before, we

model memory region determination as a learning task that

takes as input the machine code and, in turn, predicts the

memory region tied to the code. We believe that learning from

the previous sequence of inputs adequately reflects the process

of determining memory region access. This is because the

memory region that an instruction accesses can be determined

by the semantics of that instruction or its context indicated

by previous instructions. Taking the following code section as

another example. The memory region indicated by [ebx] in

the second instruction depends on the first instruction. Since

register esp is a stack pointer, we can infer that [ebx]
indicates a memory access to the stack region.

0: 8d 1c 24 lea ebx,[esp]
3: 89 0b mov DWORD PTR [ebx],ecx

Why not Shallow Learning. Besides RNN, Hidden Markov

Model(HMM) [35] and Conditional Random Field(CRF) [36]

are the other two widely used sequence to sequence ML

models 2. However, it has been shown that RNN has much

stronger learning ability than these two models in many fields

(e.g., speech recognition [37]) especially for complex and

big data. Here, execution trace is equipped with these two

properties(i.e., complex patterns and large scale data), besides,

past researches [28, 32] about using RNN for binary analysis

has also demonstrated that RNN outperforms those shallow

learning approaches. Because of those evidence, we select

RNN to solve our problems.

IV. IMPLEMENTATION

We implemented a prototype of RENN for Linux system. Our

prototype consists of three major systems: � Trace Collection;

� Deep Learning Model; � Root Cause Diagnosis;

First, we developed one subsystem which collects and

records runtime information of program execution based on

Intel Pin [38]. To be specific, the runtime information includes

binary of each instruction and its corresponding memory

access(es). With that information, we could automatically label

each memory access with the corresponding number. Then

those instruction binary and their labels will be provided as

training data of deep learning model.

Second, we implemented our deep learning model leveraging

the Keras package [39] and with Theano [40] as backend. We

trained our deep learning model with the binary encoding of

instructions and memory region information obtained from our

first system. For the testing data set, this model will predict

the memory region attached to one instruction.

Third, we prototyped a neural network assisted system

based on POMP. It interpreted the output of our pre-trained

model and verified the relationship between each pair of

memory references. It prefers the result of deep learning model

other than HT. With this strategy, we reversely execute those

instructions to get the program states prior to the crash site.

With those recovered data flow, we take the crash object as a

taint source and perform backward taint analysis to trace back

the instructions that contribute to the crash.

To be summarized, our implementation contains about 2,500

lines of C/C++ code and about 2,000 lines of Python code.

And in this work, we ran the whole system on one 32-bit

Ubuntu 14.04 with Linux kernel 4.4.0 running on an Intel

i7-4700 quad-core processor with 16 GB RAM. We trained

our deep neural networks on 2 Nvidia Tesla K40 GPUs using

the Keras package and with Theano as backend.

V. EVALUATION

In this section, we describe our evaluation procedure for

RENN. We aim to answer the following questions: � Could our

2The problem of predicting the label of every element within an input
sequence is also called tagging problem (e.g., predicting the part of speech of
each word in a sentence.). Before RNN, HMM and CRF are the state-of-art
techniques for tagging [23].

930

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

CVE/EDB ID Program Trace Execution Time Non-Alias Root Cause Statistics
Len. POMP RENN(-) POMP RENN(+) POMP RENN Global Heap Stack Other

CVE-2002-1496 nullhttpd-0.5.0 1056 1.19 2.51% 73.21% 8.48% � � 26 33 0 572
CVE-2004-0597 libpng-1.2.5 4214 95 8.42% 50.44% 31.67% � � 1 47 1345 911
CVE-2004-1120 prozilla-1.3.6 2546 15.82 69.53% 82.84% 12.26% � � 12 675 1409 152
CVE-2004-1257 abc2mtex-1.6.1 61633 15060 63.75% 59.18% 10.01% � � 742 9962 26347 1728
CVE-2004-1271 DXFscope-0.2 5000 17.39 9.20% 91.21% 7.69% � � 9 0 1594 756
CVE-2004-1275 html2hdml-1.0.3 82575 22200 59.46% 1.51% 50.48% � � 25 16379 10383 683
CVE-2004-1279 jpegtoavi-1.5 133734 39000 50.77% 12.03% 12.89 � � 13 266 32458 31265
CVE-2004-1287 nasm-0.98.38 4072 72 5.56% 7.16% 54.53% � � 7 2759 986 189
CVE-2004-1288 o3read-0.0.3 80000 12600 50% 45.67% 18.46% � � 1069 0 22022 22735
CVE-2004-1289 pcal-4.7.1 58291 44700 43.62% 45.68% 43.85% � � 1409 11347 13855 5794
CVE-2004-1297 unrtf-0.19.3 200 0.34 29.41% 100% 0.0% � � 1 24 43 5
CVE-2004-2167 LaTeX2RTF-1.9.15 17056 76 13.16% 82.43% 0.06% � � 11 1035 635 90
CVE-2005-3862 unalz-0.52 61999 28860 65.28% 30.90% 28.26% � � 4 1532 14313 5659
CVE-2005-4807 gas-2.12 16464 516 58.14% 17.06% 49.57% � � 19 1849 3875 466
CVE-2006-2465 MP3Info-0.8.5a 31888 19200 31.25% 23.42% 52.92% � � 6 4476 10905 1318
CVE-2006-2971 0verkill-0.16 50012 492 - nan nan � � 9304 0 1163 9305
CVE-2007-4060 CoreHTTP-0.5.3a 10000 309 17.44% 55.10% 37.01% � � 42 366 3098 1321
CVE-2008-2950 Poppler-0.8.4 1000 0.39 28.21% 92.13% 2.81% � � 0 1 350 149
CVE-2008-5314 ClamAV-0.93.3 99985 53612 22.38% 92.03% 7.53% � � 0 0 59138 8091
CVE-2009-2285 LibTIFF-3.8.2 50000 8796 66.53% 24.04% 32.62% � � 97 23604 5051 2255
CVE-2009-3050 HTMLDOC-1.8.27 12171 751 13.98% 34.05% 27.41% � � 17 401 4243 1093
CVE-2009-3586 CoreHTTP-0.5.3.1 10050 370 15.16% 59.01% 31.09% � � 44 63 3351 1372
CVE-2009-5018 gif2png-2.5.2 77873 9000 53.33% 73.25% 12.17% � � 9 175 20754 15935
CVE-2010-2891 LibSMI-0.4.8 50159 33600 53.57% 67.32% 18.83% � � 4 1349 25203 3796
CVE-2012-4409 mcrypt-2.5.8 1000 0.47 27.84% 80.50% 13.92% � � 6 20 359 155
CVE-2013-0221 Coreutils-8.4 5015 8.63 57.94% 94.81% 4.57% � � 6 14 106 1129
CVE-2013-0222 Coreutils-8.4 5867 37 19.54% 18.87% 39.17% � � 14 67 1854 810
CVE-2013-0223 Coreutils-8.4 4000 4.03 39.70% 82.73% 12.24% � � 34 102 2137 176
CVE-2013-2028 NGINX-1.4.0 983 1.29 38.67% 88.95% 6.41% � � 7 34 292 68
CVE-2014-8322 aireplay-ng-1.2b3 20000 721 27.74% 64.06% 30.53% � � 84 138 6926 2746
CVE-2015-5895 SQLite-3.8.6 10000 34.08 49.88% 79.41% 18.96% � � 12 549 3474 1154
CVE-2016-7445 openjpeg-2.1.1 1035 0.29 22.26% 23.88% 33.86% � � 6 0 353 158
CVE-2016-2563 PuTTY-0.66 68728 3600 58.33% 43.86% 21.62% � � 2310 7112 22573 2412
CVE-2017-5854 PoDoFo-0.9.4 4999 271 7.38% 1.41% 17.19% � � 34 201 2725 177

EDB-17611 UnRAR-3.9.3 36216 512 37.70% 93.71% 2.66% � � 4377 0 5061 367
EDB-23523 GDB-7.5.1 4000 62 17.74% 73.07% 21.59% � � 25 506 1432 151
EDB-33251 Python-2.7.5 33431 21000 57.14% 46.86% 12.86% � � 1 32949 147 25
EDB-30142 GDB-6.6 1000 0.71 53.81% 86.96% 11.36% � � 40 126 352 43
EDB-38616 Python-2.7 1000 6.98 39.98% 90.46% 8.26% � � 31 13 365 124
EDB-890 psutils-p17 3040 4.81 27.42% 58.30% 26.91% � � 17 0 996 383
Average - - - 36.25% 57.63% 21.35% 31 37 - - - -

TABLE I: List of program crashes corresponding to memory corruption vulnerabilities. “Trace Len” describes the number of

instructions from the crash site to the root cause. For Execution Time, “POMP” is in units of seconds, and “RENN(-)” means

the percentage of decreased time compared to POMP. “Non-Alias” is the percentage of identified non-alias pairs. “RENN(+)”

refers to the increased percentage in relation to “POMP”. “Root Cause” shows whether the root cause is identified with each

tool. The data statistics under “Statistics” indicate the amount of memory references across those memory regions.

trained neural network correctly identify the memory regions

which instructions access? � Could the identified memory

regions improve the performance of reverse execution with

respect to memory alias problem? � Could the identified

memory regions enhance the root cause diagnosis of reverse

execution?

A. Data Set

To train our deep learning model, we need to provide various

execution traces and the corresponding memory region(es)

each instruction accesses. To do this, we set up a tracing

system which monitors the runtime execution of 78 different

popular programs (e.g., GNU Core Utilities). To be specific,

then run these programs with the default commands and running

examples provided in the manual pages. For this work, we

compiled a training data set which contains 49,193,919 lines

of instructions from 96 different traces.

To evaluate RENN, we prepare a testing data set comprised

of a wide variety of vulnerable programs. Our resulting

data set contained 40 vulnerabilities across 38 unique Linux

programs. We assembled this data set by randomly selecting

vulnerabilities from one vulnerability database [41]. Each of

the vulnerabilities has thorough documentation on how to set

up the environment (including operating system information

along with any required libraries), as well as how to trigger

the vulnerability and, consequently, crash the program. For

each case, we followed these procedures while tracing the

program’s execution. Note that, optimization level is an element

which affects both vulnerability reproduction [41] and deep

learning [42]. To eliminate the effects of this element, we

compile the training data set and testing data set with O2 and

931

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

Global Heap Stack Other

Precision

Bi-RNN 99.55% 99.33% 99.96% 99.75%
Bi-GRU 99.55% 99.49% 99.98% 99.80%

Bi-LSTM 99.55% 99.30% 99.97% 99.76%
Our model 99.99% 99.79% 99.99% 99.88%

Recall

Bi-RNN 99.50% 99.47% 99.94% 99.81%
Bi-GRU 99.54% 99.49% 99.94% 99.78%

Bi-LSTM 99.51% 99.55% 99.94% 99.81%
Our model 99.88% 99.76% 99.97% 99.90%

TABLE II: The overall performance of different recurrent neural

network architectures.

other options. The resulting traces constitute our testing data

set. It is noteworthy that those crashing traces are affected by

not only vulnerable source code, optimization level, but also

the operating system and libraries. Therefore it’s very difficult

to get the same traces with the ones in the POMP. Taking these

crash traces as input, we will evaluate RENN’s effectiveness

and efficiency compared with POMP.

We show our examples in Table I. The software in the

data set contains a wide variety of programs ranging from

sophisticated software like Nginx with over 100K lines of code

to lightweight software such as psutils and corehttp
with less than 2K lines of code. Additionally, the vulnerabilities

include not only memory corruption vulnerabilities, but also

other common software bugs like null pointer dereference and

stack exhaustion. In addition, we can confirm the dissimilarity

between the training and testing data sets. As we observe, the

programs in Table I have less overlap with the programs in

our training data set, which avoids using the same or similar

data in both training and testing data sets. Furthermore, we

compared the instructions in the testing data set with those in

the training set. We found that only 14.02% functions overlap,

appearing both in the training and testing data set.

B. Experimental Setup

With previously prepared data sets, we design a series of

experiments to evaluate our proposed technique. First, we

trained, tested, and compared four different recurrent neural

network models with 40 execution traces. To do this, we first

labeled the bytes tied to the execution traces based on the

memory regions that the corresponding instruction accesses.

Then, we shuffled the traces and divided them into 5 disjoint

groups. With the data traces partitioned, we took each group

of data as our testing data corpus and utilized the remaining

to train our neural network models.

In this way, we obtained 5 distinct models for each of

the neural network architectures specified in Table II. By

performing label predictions with the models against the

corresponding testing data corpus, we computed the precision

and recall, and finally took the corresponding average as the

performance of each neural network architecture. It should

be noticed that all the neural networks shown in Table II are

bi-directional. This is because previous research [28] indicates

the bi-directional structure outperforms those designed with a

single-directional chain.

In addition to our deep learning experiments, we also set

up another test to verify the ability of deep learning to link

instructions and corresponding memory references. First, we

feed the execution instructions into a deep learning model

and get the output of predicted memory regions. Following,

doing reverse execution, we combine the prediction of memory

regions with HT. As mentioned in Section IV, RENN is based

on POMP and we enhance this technique by allowing it to

predict the memory regions and verify alias relationships that

HT alone fails to identify. In addition, we follow the selection

strategy of POMP in which we first introduced the instructions

of a crashing function. If this partial trace is not enough to

identify the root cause, we extend the partial trace function-by-

function until the root cause is spotted. In this way, we could

significantly reduce the execution time Hypothesis Testing

takes to identify a conflict. Finally, we measured the execution

time of POMP and RENN, the percentage of identified non-alias

pairs, and whether the root cause is caught or not.

C. Experimental Results

Deep Learning Model Performance. Table II shows the

precision and recall of various recurrent neural networks,

regarding their capability of assigning correct memory regions

to executed instructions. As we can easily observe, of all the

neural network models, our proposed bi-directional conditional

GRU model (specified as ‘our model’) exhibits the highest

classification precision and recall. This indicates that our model

has a better capability of capturing data dependencies hidden

in the sequence of instructions.

From the table, we also find that all the neural network

models have more than 99% of precision and recall. However,

this does not imply that the utility of our model is only

slightly better than those of other neural network models. In our

binary analysis task, the logged execution traces are relatively

long. Using a neural network with only 0.1% improvement

in precision or recall, we could reduce the number of false

positives or negatives by the thousands. As we can observe

from Table II, our model generally increases classification

performance by about 0.1% ∼ 0.4%. Given a long execution

trace containing tens of thousands – or even millions –

of instructions, this performance improvement indicates a

significant reduction in the memory regions mistakenly assigned

by neural networks.

In addition to showing the superior performance of our deep

learning model, we demonstrate the utility of RENN in terms

of its ability to save execution time (efficiency) and resolve

non-alias pair (effectiveness).

Efficiency Improvement on Reverse Execution. Table I

presents the execution time of POMP for each case and the

decreased percentage of execution time caused by resolved

non-alias pairs identified by RENN. From the data statistics, we

can see that, compared with POMP, the execution time of RENN
is decreased by more than 36% on average. And some cases

(e.g., prozilla, libtiff) could even save about 60% of

execution time. The underlying reason is that deep learning

932

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

can verify some alias relations that hypothesis testing cannot

while incurring significantly lower computational complexity.

The more non-alias pairs deep learning is able to resolve, the

more execution time is saved.

Effectiveness on Root Cause Diagnosis. Table I also shows

that the percentage of identified non-alias pair is increased by

21.35% on average. The 37% increase of identified non-alias

pair indirectly reflects that RENN could catch more alias relation

of memory pair and have more possibility to catch the root

cause. The internal reason is that deep learning can verify some

alias relations which reverse execution alone cannot identify.

They understand memory alias relationship from different

perspectives. Finally, we discover that backward taint analysis

does benefit from the memory alias analysis, being able to

locate more root causes with the help of a deep learning model.

For 9 cases that cannot be identified by POMP, RENN could

successfully fix 6 of them. For the other 3 cases that RENN
cannot resolve, we proceed to analyze them. For each case, we

manually verify the failure and double-check each case. We

find that, for 0verkill-0.16 and ClamAV-0.93.3, it is

extremely difficult to record all the execution traces including

the root cause as the root cause is really far from the crash site,

more than 10 million. Regarding aireplay-ng-1.2b3, we

discover that the crashing program invoked the system call

SyS_read which writes a data chunk to a certain memory

region. Since memory alias relation between the buffer to read

in SyS_read and the corrupted data by stack overflow is in

the same memory region, but different offsets, deep learning

could not help verify such memory alias relation. As a result,

SyS_read intervenes the propagation of data flow, making

the output of RENN less informative to failure diagnosis.

VI. RELATED WORK

Our work focuses on complementing reverse execution

at the binary level with deep learning. In this section, we

present existing research in the following two domains: reverse

execution and adopting machine learning for binary analysis

and discuss their limitations.
Reverse Execution. Reverse execution refers to a debugging

technique that allows developers to recover a previous program

state. To retrieve a specific state, existing works [43–45]

first try to restore the execution state from a saved point

to that state by either state saving or program instrumenta-

tion. However, these approaches do not perform well due

to space and time limitations during run-time. Then, many

kinds of researches [1, 46] seek to perform the reverse

execution using coredump information. For example, RE-

tracer [1] performed backward taint analysis to triage program

crashes based on semantics reconstructed from coredump and

Zamfir et al. developed a technique named reverse execution

synthesis (RES), which takes a coredump from a software crash

as input and automatically computes the suffix of an execution

that leads to that crash [46]. However, these techniques fail to

achieve decent performance when the coredump is corrupted.

To resolve this issue, recent studies [2, 13] utilize a new

processor hardware feature (i.e., Intel PT) together with the

coredump to perform the reverse execution. To be specific,

POMP conservatively assumes an unknown memory write may

write to anywhere and uses hypothesis testing to resolve the

memory alias. On the other hand, REPT aggressively ignores

unknown memory writes, and then uses an error correction

mechanism to rectify the mistakes caused by omitting previous

unknown memory writes. Despite the former technique could

guarantee the correctness of the reverse execution, it has a

really bad performance. Compared to POMP, REPT performs

relatively well, however, it will encounter correctness issues

during the error-correcting phase. In this work, we propose

a novel RNN to facilitate the memory alias identification in

crashed traces and then use that information to perform reserves

execution. As is shown in Section V, RENN not only improves

the performance of reverse execution but also enhances the

ability of diagnosing vulnerabilities root causes.

Machine Learning in Binary Analysis. Current works about

using simple machine learning for binary analysis mainly

focus on identifying binary function boundaries. For example,

Rosenblum et al. [47] and Bao et al. [48] used conditional

random fields and tree-based approach to solve this problem

respectively and achieved better performance than non-machine

learning approaches. However, Shin et al. [28] shows that deep

learning could perform even better on this task. Besides binary

function boundaries identification, deep learning also has been

used to perform the following tasks: pinpointing function type

signatures [32], detecting similar binaries [49] and decompiling

binary codes [50]. Unlike these works that adopt off-the-shelf

network architectures 3, we propose a new RNN based on the

specific attributes of binaries and achieve better performances

than the existing architectures.

VII. CONCLUSION

In this paper, we introduce RENN, a neural network-assisted

reverse execution system to diagnose software crashes. Our

RNN is based on a novel bi-directional conditional GRU,

designed to facilitate reverse execution for alias analysis at

the binary level. We conduct an evaluation of RENN on 40
manually tested memory corruption vulnerabilities across a

variety of software. Our results show that this new neural

architecture can significantly improve reverse execution with

respect to its capability in resolving memory aliases and

reducing execution time. Therefore, we show that RENN greatly

benefits current data flow analyses, both in terms of efficiency

(execution time) and effectiveness (correctly identifying the

root cause), when facing a post-crash incomplete execution

trace.

VIII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their

valuable feedback. This project was supported in part by NSF

Award-1718459, and by the Chinese National Natural Science

Foundation 61272078.

3Note that we do not include the architecture proposed in [49], because
their architecture works on the control flow graph instead of the raw binaries.

933

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P.

Kemerlis, “Retracer: Triaging crashes by reverse execution

from partial memory dumps,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE),
2016.

[2] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao,

“Postmortem program analysis with hardware-enhanced

post-crash artifacts,” in Proceedings of the 26th USENIX
Security Symposium (USENIX Security), 2017.

[3] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu,

“Credal: Towards locating a memory corruption vulnerabil-

ity with your core dump,” in Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications
Security (CCS), 2016.

[4] D. Weeratunge, X. Zhang, and S. Jagannathan, “Analyzing

multicore dumps to facilitate concurrency bug reproduc-

tion,” in Proceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2010.

[5] J. Huang, C. Zhang, and J. Dolby, “Clap: Recording

local executions to reproduce concurrency failures,” in

Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), 2013.

[6] W. Jin and A. Orso, “Bugredux: Reproducing field failures

for in-house debugging,” in Proceedings of the 34th
International Conference on Software Engineering (ICSE),
2012.

[7] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making

software failures reproducible by preserving object states,”

in Proceedings of the 22Nd European Conference on
Object-Oriented Programming (ECOOP), 2008.

[8] Mozilla Corp., “Mozilla RR,” http://rr-project.org.

[9] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.

Chen, J. Flinn, and S. Narayanasamy, “Doubleplay: paral-

lelizing sequential logging and replay,” ACM Transactions
on Computer Systems (TOCS), vol. 30, no. 1, p. 3, 2012.

[10] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai,

J. Gottschlich, J. Ha, and Y. Wu, “Coreracer: a practical

memory race recorder for multicore x86 tso processors,” in

Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2011, pp. 216–

225.

[11] GNU Foundation, “Gdb and reverse debugging,” https:

//www.gnu.org/software/gdb/news/reversible.html.

[12] Microsoft Corp., “Time travel debugging,”

https://docs.microsoft.com/en-us/windowshardware/

drivers/debugger/time-travel-debuggingoverview.

[13] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang,

and I. Yun, “REPT: Reverse debugging of failures in

deployed software,” in Proceedings of 13th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2018.

[14] O. Security, “Offensive security exploit database archive,”

https://www.exploit-db.com/, 2009.

[15] “Processor tracing,” https://software.intel.com/en-us/

blogs/2013/09/18/processor-tracing, 2013.

[16] “Embedded trace macrocell architecture specification,”

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.ihi0014q/\index.html, 2017.

[17] G. Balakrishnan and T. W. Reps, “Analyzing memory

accesses in x86 executables,” in Proceedings of the 13th
International Conference on Compiler Construction (CC),
2004.

[18] G. Balakrishnan and T. Reps, “Wysinwyx: What you

see is not what you execute,” ACM Transactions on
Programming Languages and Systems, 2010.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

nature, 2015.

[20] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber,

“Learning precise timing with lstm recurrent networks,”

Journal of machine learning research, 2002.

[21] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-

danau, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using rnn encoder-

decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[22] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier

nonlinearities improve neural network acoustic models,”

in Proceedings of the 30th International Conference on
Machine Learning (ICML), 2013.

[23] C. M. Bishop, Pattern recognition and machine learning.

springer, 2006.

[24] C. H. Li and C. Lee, “Minimum cross entropy threshold-

ing,” Pattern recognition, 1993.

[25] L. Bottou, “Large-scale machine learning with stochastic

gradient descent,” in Proceedings of the 15th International
Conference on Computational Statistics (COMPSTAT),
2010.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” in Proceedings of the 3rd International
Conference on Learning Representation (ICLR), 2014.

[27] S. Hochreiter, “The vanishing gradient problem during

learning recurrent neural nets and problem solutions,”

International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 1998.

[28] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing

functions in binaries with neural networks,” in Proceed-
ings of the 24th USENIX Security Symposium (USENIX
Security), 2015.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, 1997.

[30] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio,

Deep learning. MIT press, 2016.

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated

feedback recurrent neural networks,” in Proceedings of
the 32nd International Conference on Machine Learning
(ICML), 2015.

[32] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural

nets can learn function type signatures from binaries,” in

934

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the 26th USENIX Security Symposium
(USENIX Security), 2017.

[33] M. Schuster and K. K. Paliwal, “Bidirectional recurrent

neural networks,” IEEE Transactions on Signal Process-
ing, 1997.

[34] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api

learning,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE), 2016.

[35] L. R. Rabiner and B.-H. Juang, “An introduction to hidden

markov models,” IEEE ASSP magazine, 1986.

[36] J. D. Lafferty, A. McCallum, and F. C. N. Pereira,

“Conditional random fields: Probabilistic models for

segmenting and labeling sequence data,” in Proceedings
of the Eighteenth International Conference on Machine
Learning (ICML), 2001.

[37] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech

recognition with deep recurrent neural networks,” in

Proceedings of the 38th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2013.

[38] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,

“Pin: building customized program analysis tools with

dynamic instrumentation,” in Proceedings of the 26th
ACM SIGPLAN Conference on Programming language
design and implementation (PLDI), 2005.

[39] F. Chollet et al., “Keras,” 2015.

[40] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,

D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov,

A. Belopolsky et al., “Theano: A python framework for

fast computation of mathematical expressions,” arXiv
preprint arXiv:1605.02688, 2016.

[41] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao,

and G. Wang, “Understanding the reproducibility of

crowd-reported security vulnerabilities,” in 27th USENIX
Security Symposium (USENIX Security), 2018.

[42] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing

functions in binaries with neural networks,” in 24th
USENIX Security Symposium (USENIX Security), 2015.

[43] T. Akgul and V. J. Mooney III, “Assembly instruction

level reverse execution for debugging,” ACM Trans. Softw.
Eng. Methodol., 2004.

[44] T. Akgul, V. J. Mooney III, and S. Pande, “A fast assembly

level reverse execution method via dynamic slicing,” in

Proceedings of the 26th International Conference on
Software Engineering (ICSE), 2004.

[45] C. Hou, G. Vulov, D. Quinlan, D. Jefferson, R. Fujimoto,

and R. Vuduc, “A new method for program inversion,”

in Proceedings of the 21st International Conference on
Compiler Construction (CC), 2012.

[46] C. Zamfir, B. Kasikci, J. Kinder, E. Bugnion, and

G. Candea, “Automated debugging for arbitrarily long

executions,” in Presented as part of the 14th Workshop
on Hot Topics in Operating Systems (HotOS), 2013.

[47] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt,

“Learning to analyze binary computer code.” in Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI), 2008.

[48] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,

“Byteweight: Learning to recognize functions in binary

code,” in Proceedings of the 23rd USENIX Security
Symposium (USENIX Security), 2014.

[49] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and

D. Song, “Neural network-based graph embedding for

cross-platform binary code similarity detection,” in Pro-
ceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017.

[50] D. S. Katz, J. Ruchti, and E. Schulte, “Using recurrent

neural networks for decompilation,” in 2018 IEEE 25th
International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2018.

935

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 18:49:42 UTC from IEEE Xplore. Restrictions apply.

